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We apply previous results on the pathwise exponential loss of memory of the 
initial condition for stochastic differential equations with small diffusion to the 
problem of the asymptotic distribution of the first exit times from an attracted 
domain. We show under general hypotheses that the suitably rescaled exit time 
converges in the zero-noise limit to an exponential random variable. Then we 
extend the results to an infinite-dimensional case obtained by adding a small 
random perturbation to a nonlinear heat equation. 
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1. I N T R O D U C T I O N  

In this paper we consider some problems arising in the study of small 
random perturbations of dynamical systems. 

In particular we deal with a class of Ito equations in R n of the form 

dx~ = b(x~)  d t  + e dw t 
(1.1) 

X 0 ~ X 0 

Equations like (1.1), obtained by adding a Brownian noise term to a 
deterministic time evolution, appear in several branches of natural sciences 
and many interesting problems arise in their study. 
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In particular, we will be interested in some aspects of the behavior of 
x~ in the limit e --* 0: we will study the asymptotic behavior, for e --* 0, of the 
exit time from a bounded domain G c Rn: 

r ~ = i n f { t > 0 :  x~r  

Of course one expects that for small e, x~ will approach, in some sense, the 
o of the deterministic equation solution xt 

dx~ ) 
dt 

x~ = Xo 
(1.2) 

The case in which G is invariant in the future with respect to the time 
evolution given by Eq. (1.2) appears to be particularly significant. The exit 
from G of the diffusion process x~, in this case, is a very rare event in which 
the stochastic motion goes against the drift b and from a probabilistic point 
of view it represents a typical large-deviation phenomenon. 

This kind of problem has been extensively studied by Freidlin and 
Ventzel in a fundamental series of papers. (1-3) In particular, they studied 
E ( ~ ) ,  showing that it diverges exponentially in 1/e 2. A more specific ques- 
tion that goes beyond the analysis of Ventzell and Freidlin concerns the 
asymptotic form of the distribution of T0 as e --. 0. 

e E In many interesting cases one can prove that rG/ ( re)  converges in 
distribution to an exponential random variable of mean one. This feature 
can be intuitively interpreted as a consequence of the fact that, for the exit 
from G, one needs many practically independent, very unlikely, similar 
attempts. The asymptotic exponentially of the exit time shows the 
"unpredictability" of the event. This is in general a nontrivial and deep 
probabilistic result; in this paper it is proved under general conditions for 
finite- [see (1.1)] and infinite-dimensional models [see (1.3)]. 

This result is also relevant from a physical point of view in the context 
of the so-called "pathwise approach to the metastability." 

This kind of approach has been introduced in ref. 4 to describe, from 
a dynamical point of view, the phenomenon of metastability that arises in 
connection with some first-order phase transitions. In this framework, as 
an alternative to the so-called "evolution of the ensembles," the behavior of 
each typical path is studied and in this way one can give sense to what is 
called metastable behavior for a general stochastic dynamics. 

Let us recall some previous results. Day (5) shows the asymptotic 
exponentially of z~/E(r~) when G is a bounded domain completely attrac- 
ted by a unique, asymptotically stable equilibrium point with respect to the 
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,deterministic evolution given by Eq. (2.2). The author considers the more 
general case of nonconstant diffusion. 

In ref. 6 the authors consider the case when b = - V U ,  where U is a 
two-well potential with only three critical points: the absolute minimum q, 
the local minimum p, and a saddle point r; they analyze the so-called 
"tunnelling phenomenon," namely the transition from the vicinities of p to 
the vicinities of q induced by the noise. 

In particular, they show the asymptotic exponentiality of the suitably 
rescaled tunneling time. The result of ref. 6 represents an extension of the 
one of Day, since one has to deal with a domain G containing, besides a 
stable equilibrium point, also a saddle point. 

All these results use in a substantial way some analytical results based 
on a rather detailed analysis of the infinitesimal generator of the diffusion 
process x~. This feature makes, for example, rather difficult the extension of 
the results to infinite-dimensional cases. 

In the present paper we present a very general approach to the 
analysis of the asymptotics of the first exit time from a domain G. Our 
strategy is purely probabilistic and it applies equally well to the finite- and 
infinite-dimensional cases. The approach is based on the new results about 
the exponential joining in time of stochastic trajectories starting from 
different points but subjected to the same noise proved in ref. 7. 

The above result is very simple if, e.g., b ( x ) =  - V U ( x )  and U is a 
strictly convex function bounded from below, but it is by no means trivial 
when b has several equilibria. The proof of the exponential loss of memory 
of the initial conditions in ref. 7 required in the general case, besides the 
Ventzel and Freidlin techniques, a detailed analysis of the "typical paths" of 
tlhe stochastic process. 

The infinite-dimensional case that will be studied later in this work is 
the model introduced in ref. 8. It is described by the formal stochastic 
partial differential equation given by 

8,u = 8xxu - V'(u) + ~ 

u(x, O) = Uo(X) (1.3) 

u(O, t) = u(L, t) = 0 

where x ~ [ 0 ,  L] ,  t>>.O, V ( u ) = ( 2 / 4 ) u  4 - ( # / 2 )  u 2, and ~(x,t)  is the 
standard space-time white noise, i.e., the Gaussian random field with zero 
mean and covariance given by 

E(~(x,  t) ~(x' ,  t ' ) )  = 6(x -x ' )  ~( t -  t') 

Equation (1.3) can be viewed as a random perturbation of an infinite- 
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dimensional dynamical system of gradient type: in fact, we can write, for 
~0, 

(1.4) 

where 

L 

S(u) = Io clx [�89 2 + V(u)] 

Another possible physical meaning of Eq. (1.3) concerns the time evolution 
of the magnetization profile for a mean field one-dimensional ferromagnetic 
model (for more details see ref. 9). 

One can see that for suitable values of (#L) 1/2 the deterministic 
gradient flow given by Eq. (1.5) admits several equilibria, two of which are 
stable. 

In refs. 8 and 9 the authors study the tunneling phenomenon, namely 
the transition induced by the noise between the two stable equilibria. 

In Section 3 we prove the exponential joining of the random fields 
starting from different initial configurations along the same lines of ref. 7. 

In Section 4, using this result, we provide a simple proof of the 
rescaled tunneling time. 

2. THE F I N I T E - D I M E N S I O N A L  CASE 

Let X~(x) be the Markov process solution of the Ito stochastic 
differential equation in Rn: 

dX~ = b( X~ ) dt + ~ dw , 
(2.1) 

X ~ = x  

where {wt} is the ordinary Brownian motion in R n starting at the origin, 
e is a positive constant, and the drift term b(x) is assumed to be a smooth 
vector field satisfying the hypotheses listed below. 

For notational convenience we will denote by X",.to(X ) the solution at 
time t of the equation 

f 
t 

x~,,o(X)=X+ asb(X~s,,o(X))+~(w,-w,o) 
to 

As usual X~,0(x) will be denoted by X~(x). 
The first assumption on b(x) makes sure that the process X~ solution 

of (2.1) admits a unique, smooth invariant measure / (see, e.g., ref. 10): 
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hpl: There exist R0 > 0 and a > 0 such that if n(x, R) denotes the 
,outward normal to the surface of the sphere BR = BR(0), centered at 0 of 
radius R, at the point x, then 

sup sup b(x).n(x, R ) <  - a < 0  
R>RO X~c3BR 

Thus, the drift b is confining and the process X~ will spend most of its time 
in the ball BR0. We also assume that SUpx~R, IVb(x)l <K for some K > 0 .  
The next assumption concerns the long-time behavior of the dynamical 
system 

dXt/dt = b( Xt) (2.2) 

Following Ventzel and Freidlin, ~1-3) let, for any continuous function ~b: 
[-0, T] ~ R  n, 

T 

Io, T(O)= fO dt I I~ , -b (&, ) l l  2 (2.3) 

if the integral exists and Io, T(~b)= oo if not. Here H" II denotes the Euclidean 
norm in R n. For x, y e R" we also set 

V(x, y ) =  inf Io, 7-(~b) (2.4) 
~b: ~ ( 0 )  = X, ~ ( T ) =  y 

We establish an equivalence relation in R n in the following way: 

x , ,~y~*x=y  or V(x, y ) =  V(y, x ) = 0  (2.5) 

/in equivalence class K is said to be "stable" if 

V(x, y ) > 0  VxeK, Vyq~K (2.6) 

and "unstable" if it is not stable. 

hp2: There exist finitely many compacta K 1,..., K N such that: 

(i) For any two points x, y in Ki, x,~y. 
(ii) I f x6Ki  and yr then x ~ y. 

(iii) Every co-limit set of the system (2.2) is contained in some Ki. 
(iv) Exactly the first l<~N compacta are stable and they consist of 

one point (fixed point). 

It is easy to see that V(x, y) attains the same value V u for all x e K~, 
y e Kj. In terms of the numbers V o. the stability of a compactum Ki can be 
also stated as follows(I): 

K~ is stable iff Vu>0 g j r  (2.7) 
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Let now F, be a family of smooth map, from R" to R" and let 

IIF,(x) - F,(y)  tl 
L ( F ,  x) = lira sup (2.8) 

~ o  IIx- yll <~ [Ix-- YI[ 

hp3: There exist a number mo and, for each stable compactum K~, 
i = 1,..., l, a neighborhood A~ such that 

sup L(Xt, x) < e mot Vt > 0 
X E A  i 

where X,(x)  is the solution of (2.2) starting at x. 
This last assumption is clearly satisfied if the Jacobian matrices ~b~/Oxj 

at the stable fixed points have eigenvalues with negative real part smaller 
than - m o .  Under hp l -3  the following basic result was proved in ref. 7. 

Let x~ be a stable fixed point and let 

d i = s u p { 6 > 0 :  sup L ( X , , x ) ~ e  -m~ 
x ~ B~,(x i )  

Using hp3, one finds that the quantity d = m i n l ~ i ~ t d i  is strictly 
greater than zero and we will denote by A i the set Bd(xi); we define 

l l 

A = U A,, Ci= Bd/2(x ), C= U ci 
i = 1  i = l  

l 

Col = Bd/4(xi), Co = U Coi 
i = l  

with the above notation our results read as follows. 

T h e o r e m  2.1. For  any m < mo there exist positive constants K, K', 
to, eo such that for any e < eo and any t > to: 

(a) P(X~(x) e C Vx e C and sup L(X~, x) <<. e m t )  ~ 1 - -  e K/~2 
x ~ C  

(b) P(supL(X~,x)<~e m t V t > t o ) > ~ l - e  -K'/~2 
x E C  

where X't(x) is the solution of (2.1) starting at x. 

Rema~ 1. It is easy to verify that if 

sup L(X~, x) <~ e mt 
x ~ C  
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then 

I I X ~ ( x )  - X ~ ( y ) l l  sup sup <~e mt 
x,y~C, I I x -  yll 

Remark 2. Actually, Theorem 2.1 in ref. 7 was also proved under 
more general hypotheses on the drift b(x). For  example, the gradient case 
b(x) = - V U ( x ) ,  with U(x) having quartic minima (so that hp3 does not 
hold), was also analyzed. In this case the exponent m become infinitesimal 
as e--* 0. We refer the reader to ref. 7 for a more complete and critical 
discussion of our hypotheses. 

We now turn to the main problem to be discussed in this section. Let 
G c R n be a compact  set with a smooth boundary such that: 

hp4: 

G c ~ C = C ~ w C 2 u  ... w C r ,  I'<~l, and O G n C = ~  

hp5: Let V =  max.,m~<r Vn,,~ and let VG = mini ~<.~<~, miny~G V(x. ,  y). 
Then Vc > V. 

Let finally r~(x) = inf{t >~0; X~(x) r G}. Under hp l -5  our result on the 
',asymptotic distribution of rG(x) as ~ ~ 0 reads as follows. 

T h e o r e m  2.2.  

Then 

Let/~ _=/~(e) be such that 

sup P ( rc (x  ) > / ? ( e ) ) = e  l 
x e G ~ C  

(i) lim E[ rG(x) ]  1 Vx e G c~ C 

(ii) lim P(za(x)  >/~t) = e ' Vt ~> 0, 
e ~ O  

V x e G ~ C  

Remark 3. It is an easy consequence of the Ventzel and Freidlin 
theory that there exists a constant h > 0 such that/Y > exp(h/e 2) for e small 
enough. 

Remark 4. If we have b ( x ) . n ( x ) < 0  for any x eOG, where n(x) 
denotes the outward normal to the boundary of G at x, then the above 
:results extend to all x in the interior of G. 

The strategy of the proof  is basically that of ref. 6, but the result of 
Theorem 2.1 simplify considerably the whole argument. The main technical 
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estimate, which is the hard part of the proof, is contained in the following 
lemma, whose proof is postponed to that of Theorem 2.2. For notational 
convenience we will denote by o(1) any function of e going to zero as ~ ~ 0. 

k e m m a  2.1. For a n y t > O  

sup tP(zG(x)>f l t ) - -P(zG(y)>f l t ) [  =o(1)  
x , y ~ G r ~ C  

Proof of  Theorem 2.2. We start with (ii). Using the strong Markov 
property, we will show that f~(x, t) - P(To(x) > Bt) satisfies 

L(x , t+s)=L(x , t )L(x , s )  +o(1) V x e a n c  (2.9) 

The above estimate suffices to prove (ii). From (2.9) it follows in fact 
that for any x~  G c~ C: (a)The family {f~(x, t)} is tight as e ~ 0 .  (b)Let  
f * ( x ,  t) be any limit point (in distribution) of the family {f~(x, t)}. Then 
f * ( x ,  t) = e - s  

(a) Tightness follows immediately: in fact, by applying (2.9) induc- 
tively k times, we get 

f a x ,  2 k) - [f~(x, 1)] k = o(1) (2.10) 

and 

[L(x, 2-k)]k--f~(x, 1)-- o(1) (2.11) 

This means that for any 6 > 0 we can find eo, ko such that 

f a x ,  2 -k0) > 1 - 6; f~(x, 2 k~ < 6 (2.12) 

whenever e < eo. Clearly, (2.12) implies tightness. 

(b) Convergence to the exponential law is obvious from (2.9) if we 
use Lemma 2.1 to derive the normalization condition 

f~(x, 1 ) = e - l - [  sup P ( ~ ( x ' ) > f l ) - f ~ ( x ,  1 ) ] = e - l + o ( 1 )  (2.13) 
x' ~GrhC 

Thus we have to prove (2.9). By the Markov property we write 

P ( z c ( x ) > f l ( t + s ) ) = E z ( z a ( x ) > f l s ) E z ( z a ( X ~ s ( x ) ) > f l t )  (2.14) 

By Theorem 2.1 we have that since X~s(x)eG,  then, with large 
probability, X~,(x) ~ C n G, i.e., 

f~(x, t + s) = EZ(zG(x) > fls) z(X~s(x) ~ C c~ G) EZ(zG(X~s(x)) > fit) + o(1 ) 

(2.15) 
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Using now Lemma 2.1 and again Theorem 2.1, we get 

L(x, t + s)= L(x,  t) L(x, s) + o(1) 

This concludes the proof of part (ii). 
To prove that lime ~0 [E{r6(x )} / f l ]  = 1, Vx ~ G c~ C, we write 

E{rG(x)} 
f l  dt P(rG(x) > fit) (2.16) 

In order to perform the limit e ~ 0 inside the integral we need a 
uniform control as e--* 0 on the tail of the distribution of vG(x)/fl. 

Let g(t) = supx~ ~ P ( ~ ( x )  > fit). Then, by the strong Markov property 
F_see (2.14)], we get 

g(t + s) <<. g(t) g(s) (2.17) 

that is, g(2 k) <~ g(2) k-  1. We estimate g(2). Given x ~ G, let 

~(x) = inf(t ~> 0: X~,(x) ~ C) (2.18) 

Then we can write, again by the strong Markov property, 

g(2) ~< sup P(a(x)  > fl) + sup E;g(~(x) < fl) Ex;ix~)~(z ~ > 2fl - a(x) ) 
x ~ G  x e G  

~ < s u p P ( a ( x ) > f l ) +  sup P (Ta>f l )  (2.19) 
x E G  x e G n C  

The second term is equal to e ~ by the definition of fl, while the first 
one is o(1) by standard results of Ventzel and Freidlin. In conclusion, 

g(2) ~< e -~ + o(1 ) (2.20) 

By induction from Eq. (2.20) we get that g is L~(R +) and so, by the 
clominated convergence theorem, we deduce that we can perform the limit 
~-r  0 inside the integral in (2.16) and the result follows from (ii). 

Remark  5. From the above argument and without using the con- 
vergence of P(za > fit) to the exponential law it follows that 

fl > const- E(rG) 

for a suitable constant independent of e. Using the results of Ventzel and 
Freidlin, this implies that 

lira inf2e 2 ln(fl) >~ V G 
e ~ O  
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Proof of Lemma 2.1. Let 

z j=inf( t>~O;X~(x)~Cj) ,  j = l  ..... l '  

and let T O = e (v+ vG)/4~2 
The theory of Ventzel and Freidlin tells us that 

l imsup2~21nE('cj(x))<~ V V x ~ C ~ G  
~ 0  

(2.21) 

(2.22) 

Thus, the time To is very large compared with the typical time scale 
of vj, j = 1 ..... l', but, using Remark 4, it is very small compared with the 
time scale of zc. This observation suggests that we write for a given j and 
for any x in G c~ C 

P(rc(x )  > fit) <~ P(zG(x) > fit; r j (x)  < Tot) + P(*j(x)  > To t) 

< ~ P ( r G ( x ) > f i t ; r j ( x ) < T o t ) + E ( r j ( x ) ) / T o t  (2.23) 

where we used the Chebyshev inequality. Thus, by (2.22) and the definition 
of To the term in the lhs of (2.23) and the first term in the rhs differ by o(1). 
Now, for any x in G c~ C, we compare P(rc(x ) > fit) with P(rG(xj) > fit). By 
the strong Markov property and (2.23) we have 

o(1) + inf P(z~(x)  > fit) <~ P(rG(x) > fit) 
x ~ C  i 

sup P(vG(x) > fi(1 -- To/fi)t) + o(1) 
x e C j  

which gives 

IP(vG(x) > fit) - P(mG(xj) > fit)l 

sup IP(~G(x) > fit) - P(rG(xj) > 1301 
x E C j  

§ sup IP(~G(x) > fit) - P(vc(x )  > fi(1 - To~fit)t)l + o(1 ) 
x E C j  

The second term in the rhs of (2.23) is estimated by 

sup P(fi(1 - To/fi) t <. re (x)  ~ fit) 
x~Cy 

~<supP(x~(l_T0/p),(x)6Cc~G)§ sup P ( z ~ ( x ) < T o t ) = o ( 1 )  
x ~ C j  x ~ C c ~ G  

because of Theorem 2.1 of ref. 7 and of the Ventzel and Freidlin result 

sup P ( z ~ ( x ) <  To t )=o(1 )  
x E C n G  

(2.24) 

(2.25) 
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So, since x ~ G c~ C was completely arbitrary, we have reduced the 
proof of Lemma 2.1 to the problem of showing that the first term in the rhs 
of (2.24) is o(1). It is at this point that the result of Theorem 2.1 plays a 
crucial role. In fact, by using Theorem 2.1 together with Remark 1 we have 
that with large probability the two paths X~(x), X~(xj), x~  Cj, wilt join 
exponentially fast and therefore the two exit times zG(x) and zc(xi) will be 
almost the same. 

More precisely, we have 

sup IP(vc(x) > 30 - P(wG(x#))I 
xeCj 

~< sup EO~(zc(x) > 30 Z(1/~2 < zG(xs) < 30 
xe Cj 

X )~([X~G(Xj)(X ) --XeVG(Xj)(Xj)[ < I x -  Xj[ e mzG(X))) 

+ (same term with x and XJ interchanged) + o(1) (2.26) 

where o(1) represents the probability of those paths such that either the 
conditions of Theorem 2.1 are violated or min(zG(xs), zG(x)) < 1/e 2. 

The first two terms in the rhs of (2.26) are estimated in the same 
way and we therefore treat only the first one. By making again an error 
o(1) [see (2.25)], we can substitute the characteristic function X(1/e2< 
r,~(xs)<flt) with g(1/e2<zG(xj)<~t-et).  Thus, by the strong Markov 
property our estimate reduces to the estimate of 

sup P(zG(x ) > et) (2.27) 
x ~ G; d i s t ( x ,  c3G) < e x p (  m / s  2) 

To show that this last quantity is o(1), we proceed as follows. Let 
U =  (x r G; dist(x, G)=  exp(-m/e2));  it is clear that for e sufficiently small, 
U is a smooth surface (e.g., C 2) enclosing G. Let also 

a(x) = inf{t >~ 0; ew,(x) e c~'; x ~ G } (2.28) 

where w,(x) is the Brownian motion starting at x. Rather standard 
estimates on the Brownian motion show that 

sup P ( a ( x ) >  exp [ 3 e ~ 2 ] ) = o ( 1 )  (2.29) 
x ~ G; d i s t ( x ,  cqG) < e x p (  --  m/e 2 ) 

This is because on a time scale exp[-(3m/2)/s  2] the Brownian 
motion swt has fluctuations of order ~ e x p [ -  (3m/4)/~ 2] ~> 2 exp(-m/~ 2) 
for ~ small enough. Furthermore, 

Ix~x~(x)- ew~x~(x)t <~ k~(x) (2.30) 
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for some k > 0 so that 
~G(x) < ~(x) 

if ~ r ( x ) < e x p [ - ( - 3 m / 2 ) / a  2] and e is small enough. This, together with 
(2.29), proves that (2.27) is o(1). 

3. THE I N F I N I T E - D I M E N S I O N A L  CASE 

3.1. The Model  and Main  Results 

In this section we start the analysis of the problem discussed in the 
previous section for a stochastic partial differential equation. We want to 
follow the strategy that has been used in the finite-dimensional case and 
therefore we first have to prove the analogue of Theorem 2.1 in the new 
context. 

The model that we shall consider here is the one introduced by Faris 
and Jona-Lasinio. (8) It concerns a nonlinear heat equation with noise in 
one dimension that can formally be written as 

Otu ~ = Oxx u~ - V'(u ~) + ~c~(t, x)  
(3.1) 

u~(x, 0) = Uo(X); u~(0, t) = uS(L, t) = 0 Vt > 0 

where x e  [0, L], t>~O, V ( u ) = ( 2 / 4 ) u 4 - ( # / 2 ) u  2, 2, /~, and a are positive, 
and ~(x, t) is the standard space-time white noise, i.e., the Gaussian 
random field with zero mean and covariance given by 

E(e(x,  t) e(x' ,  t') )=  6(x - x ' )  6( t -  t') (3.2) 

The standard way to give a precise meaning to Eq. (3.1) is to trans- 
form it into the integral equation 

u ~ = - G V ' ( u  ~) + eW, + guo (3.3) 

where we have the following. 

1. g(x, y, t )=e 'a~  y ) = L n ~ l e  sin - -  sin 

with A D the Dirichlet Laplacian on L210, L].  

2. G is the operator that solves the inhomogeneous heat equation 
with zero initial condition. G has the expression 

G(x, t, y, s) = g(x, y, t - s )  O ( t -  s) 

where 0 is the Heaviside function. 
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3. W(x, t ) -W~(x ) ,  formally given by W,(x)=(GcO(x, t) is the 
Gaussian field with covariance 

t fL 
E(W'(x) W'(Y))= fs A'& ~o dzG(x,t,z, z) G(y,s,z, r) 

For more details see ref. 8. 

N o t a t i o n .  We will denote by CD,~o([O,L]x[O, T]) the space 
of real, continuous functions on [0, L]  x [0, T] that satisfy Dirichlet 
boundary conditions on [0, L]  and such that u(x, O)= Uo(X). By CD we 
will denote the space Co([0, L]). The uniform norm will be denoted by 

Iq-I1oo. 
Next we recall some results concerning the solution of (3.1). 

Proposition 3.1. The Gaussian random field W,(x) is such that, 
Vt > 0, x --, W,(x) is a H6lder continuous function with exponent 1/2 - ~ < 
c~' < 1/2, V6 > 0, satisfying the Dirichlet boundary conditions. 

Propos i t ion  3.2. VT>0,  VuoECDD, VWeCD, o([O, L] x [0, T]) 
there exists a unique solution u of (3.3) in CD,,o([O,L]x[O, T]). 
Furthermore, the solution u depends continuously in the uniform norm on 
z=  W+u.  

In order to describe the qualitative behavior in time of the random 
field u(x, t) it is important to have a detailed description of the behavior of 
the associated unperturbed infinite-dimensional dynamical system: 

O,u ~ = Oxxu ~ - V'(u ~ (3.4) 

where S(u)= ~ dx [�89 + V(u)] is the equilibrium action. 
Clearly, one has to know the equilibrium solutions of (3.4) that are the 

critical points of S(u). 
A complete study of these critical points can be found in ref. 8 or in 

ref. 11, where it is proven that their number and nature depend upon the 
parameter #1/2L. It is clear that u = 0 is always a critical point. It can be 
proven that for small values of l~/2L it is the only one present. 

The main results are summarized in the following. 

Proposition 3.3. Let N r c < L x / - f i < ( N + l ) ~  , where N is an 
integer. Then: 

(i) S(u) has exactly 2 N +  1 critical points _+~bl-.- ___~bu, ~bU+l=0. 
Tlhe function ~bn, 1 ~< n ~< N, has n half-periods. 

(ii) S ( •  
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(iii) +_~bl are the absolute minima of S and thus are absolute stable 
equilibria. The other critical points are saddles. The unstable manifold 
associated with ~b, has exactly ( n -  1 ) dimensions. 

For a proof see ref. 8 or ref. 11. 
The picture that comes out from the above result and from a Ventzel 

and Freidlin type of analysis of the behavior of u~ when the noise is small 
(e ~ 1) is the following one: if the initial datum Uo belongs to the basin of 
attraction of one of the two absolute minima, say + ~bl (we are assuming 
L ~ > re), then the system, during a finite time To(uo), independent of e, 
typically goes to the vicinities (in the uniform norm) of ~b~ and then starts 
randomly oscillating nearby ~bl until a very unlikely large fluctuation leads 
it to the vicinities of the other minimum .-~bl. The probability of 
occurrence of this "tunneling event" in a given time interval T is of order 
exp(-2AS/~2), A S =  S((~2)- S((~), and so the typical time we have to wait 
to see tunneling is of the order exp(2AS/e2). 

The basic results behind this analysis are contained, as we said, in 
ref. 8; the complete Ventzel and Freidlin picture has been recently obtained 
by Freidlin. (~2) We now turn to the statement of the main result of this 
section, which represents the counterpart for Eq. (3.1) of Theorem 2.1. We 
first fix some notation: let u~,;,o(x; Uo) be the solution of (3.3) with initial 
condition Uo at time to. We put 

Hu~;,o(Uo)ll~o = sup lu~;,o(x; Uo) I 
O < x < L  

For any 6 > 0  we define the 6-neighborhoods of 
{u; Ilu+~blll~ <6}  and we set 

C6 = C2 u Cy  

-~-~1 as C ~ =  

Next we define the quantity 

L(u~;,0; u) = lim sup 
n ~ O  Ilu vl l~<~l  

II u~;,0(u) - u~;,0(v)It 
I l u -  vlL 

(3.5) 

which plays the role of derivative of the solution u~ with respect to the 
initial condition. Let, finally, for L ~ > 7z, mo be the smallest eigenvalue 
of the self-adjoint operator --AD + 32~b2- # on L2([0, L]). 

With these notations our theorem reads as follows. 

T h e o r e m  3.1. Let ktl/2L>Tz; then for any m < m  o there exist 
positive constants 6, ~o, k, and to such that W < e o, 
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(a) P(u~,;o(Uo)~C6 VuoeC6; sup L(u~;o;u)<e ,,t) 
u ~  C~5 

~> 1 --  e-k/~2 Vt > t o 

(b) P(sup L(u~;o; u ) < e  m t  Vt>to)~> 1 --e -k/~2 
u e  C 6 

C o r o l l a r y  3.1. Let ~VZL, Co, 6, k, mo, and to be as in Theorem 3.1. 
Then there exists c > 0 such that 

P ( sup Ilut;~ - U~:o(v)ll ~ < ce mt Vt > to] >1 1 -- e-k/~2 
\ . . . .  c; I l u -  vllo~ / 

and the same for C~. 

As is clear in the corollary, the above results prove the joining of two 
field configurations close to the same equilibrium solution under the 
:random evolution induced by (3.3). An interesting question is whether the 
joining takes place when the two initial conditions are close to different 
,equilibrium solutions, say u ~ C•, v E C~- (see also ref. 7 for a thorough 
discussion of the same problem). 

The answer is that u and v will eventually join exponentially fast in 
time but only after a time T0(e) of order exp( Vie 2) for a suitable constant 
V>0.  The time To(e ) is the typical time scale needed for either u or v to 

jump under the random evolution to the other minimum of the action. 

P r o p o s i t i o n  3.4. In the same assumptions and notations of 
Theorem 3.1 there exists V> 0 such that if To(z) = exp(V/e2), then 

I{U~;o(U) - U~;o(V)ll -m, ) 
P sup ~ < c e  Vt>To(e  ) > ~ l - e  ~/~2 

\ . . . .  c~ I l u - v l l ~  

Remark 1. The above results have been stated for L x/#  > ~ only, In 
this case, by Proposition 3.3, there are two minima of the equilibrium 
action. The results extend, however, without problems to the case 
L x / # <  =, when only one minimum is present. More complicated is the 

case L x /#  = ~z. For this value of the parameter the null solution of (3.4) is 
the only critical point of the action S(u) but the linearization of (3.4): 

O tu =- C~ xxU + I.tU 

has a zero mode, i.e., inf(2; ~ e s p e c ( - J D -  if)) = 0, where J D - I ~  is looked 
upon as an operator on L2[0, L].  

This fact prevent us from using the simple arguments exposed below 
(see the proof of Lemma 3.1) and a more detailed analysis is required. 

822/55/3-4-2 
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The finite-dimensional analogue of this problem was treated in detail 
in ref. 7; there it was proved that in a situation like the above one, the con- 
stant m appearing in Theorem 3.1 is still positive but becomes infinitesimal 
as e--* 0. Although we do not discuss the details here, we believe that the 
approach and the techniques developed in ref. 7 for this kind of problem 
apply also to the infinite-dimensional case, so that Theorem 3.1 holds also 
for L x/~ = 7~ but with m = m(~); m(e) ~ 0 as e ~ 0. 

3.2. Proof  of  the  Results 

Proof of Corollary 3.1. Let 6 be as in Theorem 3.1. It is very easy 
to see that 

Ir u ~ ( u o )  - u~(vo) l f  
sup ~< sup L(u~;o; Uo) 

~0,~0~ c ;  I P u o -  volt ~ ,,0 ~ ~ 

Thus the Corollary follows from Theorem 3.1(b). 

Proof of Proposition 3.4. Using Corollary 3.1, it is sufficient to 
prove that there exists V > 0  such that 

P(Hu~,(-~)-uT((~OIl~ <e m, Vt> To)> 1 --e -k/~2 (3.6) 

for some K > 0  and ~ small enough, where To=exp(V/e2). To prove (3.6), 
we first observe that 

u~(x;-~l)<u~(x;+~l) Vt>O, Vx~EO, L]  (3.7) 

In fact, let ~(t, x ) =  u~(x; +~1)- u~(x; -~1);  then ~ satisfies the evolu- 
tion equation 

a , ~ = a x x ~ -  V'(u~(~l))+ w(u~(-~l ) )  = ~xx~- v'(~)~ (3.8) 

where fi(t, x) lies between u~(x; q~l) and u~(x; -q~l). Using the Feynman- 
Kac formula, we can write 

~(x,t)=Ex{~(wt, O)exp[-f~dsV"(u(s,  ws))] 

• Z(Ws ~ [0, L]  Vs <~ t)} (3.9) 

where w, is the Brownian motion starting at x. The positivity of ~b(x, t) 
follows now from that of ~b(x, 0). We omit the details of the proof of (3.6) 
because it follows step by step the proof of Proposition 2.2 of ref. 7 for the 
one-dimensional case. 
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Proof of Theorem 3.1. The proof follows step by step the proof of 
Theorems 1.1 and 2.1 of ref. 7. Thus, we will be very sketchy and refer the 
reader to ref, 7 for a simple description of the general strategy. We now 
give some details. 

For each a > 0, m > 0 let l =  l (a)= [exp(a/~2)] and let 

So=So({W,},>o) 
be given by 

So = { je  N; @;(j_ ~t(uo) r Ca or L(@:(j_ ~1~; uo) > e ~l for some Uo e Ca} 

(3.1o) 
So if { 1, 2 ..... N} c~ So = ~ ,  then 

U~Nt;o( Uo ) ~ Ca 

and 

VUoe Ca (3.11) 

sup L(u~vt;o; Uo) < e mm (3.12) 
uo ~ C6 

The last inequality follows immediately from (3.15) and the bound 

L(u~+s;O; Uo)< L(u~;s; u~,(Uo)) L(u;:o(Uo)) (3.13) 

We need now a probabilistic control of the "bad set" So. We have the 
following result. 

ke rnma  3.1. For any m <mo,  where m o is the smallest eigenvalue 
of - -AD+ V"(01), there exists eo, 6, and k=k(6 ) ,  ao=ao(6) such that for 
any a < ao 

P ( j e S o ) < e x p ( - k / g  2) Ve<~o 

Proof. Let us fix m < mo. We will show that it is possible to choose 
6 > 0 so small that 

Pt.to = P(u~ + ,o:~(Uo) e Ca Vuo e Ca and sup L(u~ + ,~;~; uo) < e-re,o) 
uO ~ C6 

> 1 - e -2k/~2 (3.14) 

for any t and some fixed to (e.g., to= 1) and a constant k=k(6 ,  to). If 
ao ~<k, then the lemma follows from (3.14). In fact, we have 

l/to 

P(j(~So)>~ 1 - ~ (1 - P*,o,,o) 
i = 0  

( ~ )  ( 2 ~ )  ( ~ 2 )  >71-exp  a exp - > ~ l - e x p  - 

if e is small enough. 
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We turn to the proof of (3.14). By stationarity we consider t = 0 .  As 
shown in ref. 8, the difference between the random field u(x, t) and the 
classical solution u ~ of (3.4) with the same initial condition is bounded by 

for  s o m e  k I > 0. 

Furthermore, 

II<-u~ < e  kIt sup II~W, II~ (3.15) 
O < s < t  

u~ Vuo~C6 (3.16) 

provided t is large enough (see Appendix A). Thus, if 

(~ kilo (3.17) sup [[eWt0[[ ~ < ~ e 
t < / 0  

u~0;o(Uo) e C~ VUo z Ca (3.18) 

As shown in ref. 8, the probability of (3.17) is at least 1 -  exp(-k2/~ 2) 
for some k2 and ~ small enough. In order to estimate L(U~o;O; Uo), we 
compute for Uo, Vo in C6 the difference ~b, = u~,(Uo)- u~(vo). We get 

~,~b = Oxx%- V"(h(x, t))~ (3.19) 

where h(x, t) is between u~,(x; Uo) and u~(x; Vo). Thus, if both u~(uo) and 
u~(Vo) belong to C6, we have 

I V"(h(x, t ) ) -  V"(qbl(x, t))l ~< const-6 (3.20) 

and, by (3.19) and the Feynman-Kac formula, we get 

II~b,LI co < e . . . .  t .  at lie- Ht~boll o0 (3.21) 

where H =  --AD + V"(~bl). It is now easy to see that 

Ile-H%ll ~ < const, e-m~ 

and therefore if 6 is small enough 

Ibm,011 o~ < e mto II~oll ~ (3.22) 

Using the arbitrariness of uo, Vo, we obtain from (3.22) 

sup L(u~o:o; Uo) < e -m'~ (3.23) 
u0 ~ C~ 

provided u~o;o(Uo) e Q ,  Vuo ~ C~. 
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In conclusion,  the probability of  the event appearing in (3.19) is 
bounded from below by 

1 - e - k/e~ 

Remark 2. It is important to observe that if V(u) is a strictly convex 
function, i.e., V"(u)>m for any u, then the bound (3.22) holds for any 
realization of the noise term eWt. So in this case the proof of Theorem 3.1 
becomes trivial. 

From Lemma 3.1 we then conclude that for typical configurations of 
the noise eW, the set So consists of small clusters well isolated one from the 
other. 

Following ref. 7, we introduce a sequence of sets Sk 

So~S lo . .  ~ ...Sk~_ ... 

as follows. Let dk = exp(2k), 2 > 1; we set 

Sk + l = Sk\ Sg (3.24) 

where Sf, = t,)~ C~ is the maximal union of clusters of sites in So (not 
necessarily connected) such that (i) diam C~,<dk; (ii) dist(C~,; Sk\C~) 
< 2dk + 1 ; (iii) there exist C~, = (& fl) such that (no - 1) dk < dist(~C~,, C~,) 
< nodk; C'2 is ( k -  1 )-admissible and 

u~t:~(uo) ~ C~ Vu0 e B~ 

where n o s N; 6 is as in Lemma 3.1 and 

D e f i n i t i o n .  A set A c N is k-admissible if OA c~ C2 = ~ ,  Vj ~< k. 

The sets S~ are the "bad sets" on scale k in the following sense 

P r o p o s i t i o n  3.5. Let A c N  be an interval of length L, 
A = [ n , n + L ] ,  such that (i) AC~Sk+L=~, (ii) L>dk+J5,  (iii)A is 
k-admissible. Then 

(a) u~.+~,;.t(Uo)eC~ VUoe C~ 

(b) sup L(u~+r)t;~l; Uo) <e -mk+~m 
u0 ~ Cc~ 

where mk+l>rnk--const .(dk/dk+l)>m(1--f l)  for any 0 < f l < l  and 2 
large enough. 

ProoL The proof is identical to the one of Proposition 1.1 in ref. 7. 

As far as the probability of the event d n Sk = ~ is concerned, we 
have the following result (see Proposition 1.2 of ref. 7). 
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Proposition 3.6. There exists eo > 0 and for e < eo a function q(e) 
with r/(e) --* ~ as e ~ 0 such that 

P(A ~ Sk ~ ~25) < IAk 

where IAI = # { j ~ A } .  

P(O ~ So) 1/2 

ProoL As is shown in Proposition 1.2 of ref. 7, the result follows 
from the following lemma 

I . e m m a  3.2 (see Lemma 1.5 in ref. 7). For any p and any a ' > 0  
there exists a constant k(p) such that for any e small enough 

sup P(z(Uo, O, T) > pT) < e x p [ - k T e x p ( - b / e 2 ) ]  
uo c C6 

where Z(Uo, 0, T) is the time spent by the random field u~(uo) starting at u0, 
outside the set C~ up to time T. 

The proof is given in Appendix B. 
The rest of the proof of Theorem 3.1 is now the same as that of 

Theorem 2.1 of ref. 7. 

Remark 3. In the proof of Theorem 2.1, (7) a considerable simplifica- 
tion comes from the uniform Lipschitz condition on the drift term b. This 
leads to the estimate 

L(x~; x) <~ e k' Vt, x 

where x~ is the solution of 

dx~ = b(x~) dt + e dw, 

In our case the drift is not uniformly Lipschitz (in any sense) also because 
of the quantic behavior of V(u). However, we still have the estimate 

L(u~; u) < e kl Vu 

This is because if we write explicitly V"(h(x, t)) in (3.19) we get 

~?,~b = C3xx~b - 32h2~b +/~b 

which gives together with the Feynman-Kac  formula 

Ir t)] < e ~' Ile~tr ~ < e ~t ]1r 
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4. T H E  I N F I N I T E - D I M E N S I O N A L  C A S E  II. A N A L Y S I S  OF 
T H E  T U N N E L I N G  T I M E  

We consider here the analog of the problem analyzed in Section 1 for 
the model introduced in the previous section. We adopt the same notation 
of the Sections 2 and 3. 

For  ltl/2L > z let C;~ and C2 be the spheres of radius 6 in the uniform 
topology centered at the minima -~bl and +~bl, respectively. We fix 
m < m o  and we choose 6 so small that Theorem3.1 applies and 

o = + ~  V u 0 ~ C ~ .  lim, ~ +o~ u~;~0 
We define for Uo e C2- the time of tunneling r,0 as the stopping time 

given by 

%0 = inf{ t ~> 0; u;,.o e C ;  } (4.1) 

Then we have the following results. 

T h e o r e m  4.1. 

Then 

Let fl(e) be such that 

sup P(ru0 > fl) = e 
u 0 ~ C ~  

(a )  l im  - I 

(b) lira P(z~, > fit) = e ' Vt ~> 0 
e ~ O  

Proof. The proof is patterned on the scheme given for the finite- 
dimensional case. As in Section 2, we will prove the following basic lemma. 

L e m m a  4.1. For any t > O  

sup IP(z~o > fit) - P(z~ >/~t)l = o(1) 
U0~ C~ + 

Let now f~( t )=P(z~l>f l t  ). Then, exactly as in Theorem2.2, one 
proves 

f~(t + s) = f~(t) f~(s) + o(1 ) (4.2) 

From (4.2), part (b) follows immediately as in Section 2. To prove (a), let 

g(t) = sup P(z,~ > fit) 
uor 
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Then [see (2.20)] we have 

g(2 k) ~< g(2)k 1 (4.3) 

and we have only to estimate g(2). Let 

- �9 ~ q- 
au0 = mf{t ~> 0, ut;~o ~ C~ w C~ } (4.4) 

Then, by the strong Markov property, 

g(2)<.supP(a~o>fi)+supE{z(a,o<fl)P(%(o,o; ,o)>fi)  } (4.5) 
uo uo 

Using Lemma 4.1 and the definition of au0 and of fl, we get that the second 
term in the rhs of (4.5) is bounded by e -1 while the first one, using 
Lemma 1 of Appendix B, is estimated by 

sup exp[ - fl exp( - a/~2) ] E exp{ [exp( - a/e2)] au0} 
u0 

2 exp[ - f l  exp(-a /e2)]  (4.6) 

for any a > 0 and ~ sufficiently small. From the large-deviation estimates on 
the tunneling probability given in ref. 8 it follows immediately that fl(e)> 
exp(h/e 2) for some h > 0 .  Thus the rhs of (4.6) is o(1) if a is small enough. 

In conclusion, by (4.3), (4.5), and (4.6) we get 

g(t) <<. c - t  

for some constant c > 0 and therefore we can perform the limit e --* 0 inside 
the integral 

E(z•,) 
f = dt P(%~> fit) (4.7) 

and get the result. 
It remains to prove Lemma 4.1. Let 

T o sup inf{t>~0; o = u t ; .  o e C ~ / 2 }  
uo ~ C26 

where u,;u0~ is the deterministic solution of (3.4) starting at Uo. Such a time 
is clearly finite because of the results of ref. 8 (see Appendix A). 

Lemma 4.2. 

sup P(%o< 1/~ 2 or (fit-- To) <. v,o ~ flt)= o(1) 
u0 ~ C ~  

Assuming the above lemma, we now prove Lemma 4.1. 
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We write for Uo ~ C3 

P(zuo > Bit) - P(zo~ 1 > Bit) 

= Ez(r.o> fit)Z ( ~  < r,~ < (flt-- To)) 

+Ez(ro,>fl t)Z ~ ruo<( f l t - ro )  +o(1)  (4.8) 

'where we have used Lemma 4.2. 
We estimate only the first term in the rhs of (4.8), the second one 

being completely equivalent. 
If Zg denotes the characteristic function of the event 

{ Ilu~,,0- u~;olll ~ <e -m' Vt> To} 

then, using Theorem 3.1, we can find To and e so small that the first term 
in (4.8) can be written as 

E Z ( % o > f t ) Z ( ~ < r ~ < ( f l t - T o ) )  + o(1) 

- U . . o l l  > ~< sup P(%o>To)~ sup P( sup [lu~;~0 o 6/2) (4.9) 
uoEC2& uoeC~ 0 < t < T 0  

Using (3.20)-(3.22), the last term in the rhs of (4.9) is o(1). 

Proof of Lemma 4.2. Using the Markov property, we have 

P(f t  - To <<. %0 < Bit) 

sup P,0(r,o < To) + sup Puo(U~t_ T0:u0 ~ C~- U C ~  ) = o(1) 
.o  �9 c~ ~o ~ c2 

because of the Theorem 3.1 and of the large-deviation estimate of ref. 8. 
On the other hand, the same proof of Lemma 3.1 shows that 

P(z,o < 1/e 2) = o(1 ) 

This concludes the proof. 

Remark 4. Although the time of tunneling is one of the most physi- 
cally interesting stopping times of the model, from a probabilistic point of 
views one can imagine other rare events which take place on a time scale 
exponentially large in 1/e 2. Let, for example, V(u) be a single-well potential, 



500 Martinel l i  e t  al.  

e.g., V(u) = u 2, with V(u) >>. 0, V(0) = 0, V'(O) = 0. Then in this case u - 0 
is the only critical point  and there is no tunneling phenomenon .  If  we let 

~o = inf{t > 0; [[U~;o[] ~ = 1 } 

then we can try to prove  the analog of Theo re m 4.1 for 3 0 . 
However ,  the p roof  of  L e m m a  4.1 seems in this case more  problemat ic ,  

for the following reason. In  order  to prove  that  

sup jP(z~0 > f i t ) -  P ( %  >/~t)l = o(1) 
Ilu01/oo < 6 

we would argue as follows. Since ~0 ~ 1/e z with large probabi l i ty  VUo, 
[luoll ~ < 6, and since 

J[ u~;.  0 - U~;oJ[ co ~< e - m ~  Vt > to 

again with large probabil i ty ,  we have that  when, e.g., ru0 >~o ,  then u~0., 0 
has a uniform no rm greater  than  1 - e x p ( - m / s 2 ) .  In the finite-dimensional 
case this would imply that  

30  ~ "CuO ~ "/u0 -[- e -- 3m/2e'2 

thus proving  the lemma.  The  p roof  was based on the simple r emark  that  
on a t ime scale e x p ( - 3 m / 2 ~  2) the drift term b dt is negligible with respect 
to the noise term e dwt. In the infinite-dimensional case, however,  we 
cannot  immediate ly  neglect the drift d2/dx 2 -  V'(u), since the solution u~ is 
not  differentiable and a more  careful analysis is required. 

If  we denote by ~ ( x ) -  U~o;uo(X ), then we have f rom Eq. (3.3) 

u~, + ~o;uo - t~ = eW~t + O(At) + (g(t)(At) 

with At ~- e x p ( -  3m/282). 
One  can show that  

eW~t~(At)  v4-" Vr />0  

while 

(4.10) 

is H61der cont inuous  with exponent  < 1/2. This implies that  the first and 
third terms in the rhs of  (4.10) are bo th  of order  (At) 1/4-~ unless par t icular  
cancellat ions occur  in the integral (gfi). Since the third term relaxes to zero, 
the f ini te-dimensional  a rgument  breaks  down. 
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Another way to rephrase the above problem is to imagine the field 
u~(x) as the profile of a chain of coupled harmonic oscillators subjected to 
random kicks ec~(t, x) and to a force - V'(u). The above result is equivalent 
to saying that, due to the roughness of the profile as a function of x, the 
force exerted by the other oscillator in x is comparable on a short time 
scale to the random kicks ecc 

This fact prevents us from proving, for example, that when the field u~ 
reaches a certain level (in the uniform topology), then at a time 
immediately after, it overcomes that/eve/. 

It is very likely that a frequency analysis is required in order to solve 
this problem. 

APPENDIX A 

Let I1" rl 2 and II-111 denote the L 2 and H 1 norms, respectively, in [0, LJ, 
namely, 

We have 

0 Ilut;u0- ~11[~ ~ o 2 Ilu,;~0- ~1112 

( ~  fO ds )2 -I'- IlU0-- ~1112 ~- C (t--S)1/2 0 (1.1) 
II ",;.0 - ~1112 

[see ref. 8, Eq. (8.8)]. Moreover [see ref. 8, (8.6)] 

I 1 . , %  - . o 1 1 :  ~ e c' 

for some c > 0 and therefore 

0 te2Ct Ilu,;,0- @111~ ~ < e~ " ll~1- u011~ 

i.e., 

;Since 

Ilu~ ~blll ~ ~< const - 6 if II~z-uoll~ <~  (A.2) 

0 iru,;,o_O611r~ ~ Ll/2 o II u,~0 - ~1 Iil 
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in order to prove (3.21) it is sufficient to show that 

0 
Ilu,;uo--OllLl <<. 6 /2  VUo;  Iluo-~llll  <~  

provided 6 is small enough and t sufficiently large. 
This follows from the results of ref. 8. 

APPENDIX  B. PROOF OF L E M M A  3.2 

The proof of the lemma follows that of the analogous result in finite 
dimension but the argument is even easier using the fact that in our case 
the time needed for the classical solution o ut;u0 to reach the ball 

B~= {~e co; Ilull <R} 

is bounded uniformly in the sup-norm of the initial condition and in R 
provided R is large enough. This is a consequence of the quartic behavior 
of the potential V ( u )  at infinity. A simple proof of this fact goes as follows: 

d -utV(ut)] - -  [UtADU~ ut[12=2 dx dt  L] o 2  o o o , o 

L 

<~ -2fo 
because 

2 
EZ(u~ 4 -/~(u~ 23 d x  ~ - 2  ~ Ilu~ 4 + 2/t ilu~ 2 (B.1) 

fL U2(X)dx~[fo'U4(x)dx]l/2L1/2 

A simple calculation shows that (B.1) implies 

since 

2#L) 
sup inf t; Ilu~ 2 < ~ - j ~  ~< C(2,/~, L) 

f' ]lu~ IlU~ - d s ( t - s )  1/2 iluOll2 t--1 

(B.2) 

we get (B.2) for the Hi-norm and thus, by (A.3), for the sup-norm. 
Let now for 3 ' >  6 

~1 = inf{ t > 0; u~;u0 r C~ } 

~1 = inf{ t > zl ; u~;,0 e C; } 

z i = inf{ t > ag l ; u~;,0 r C6 } 

(B.3) 
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and 

v ,= inf{n  ~>0; av>  t} 

Clearly we have 

sup P(z(Uo, O, T) > pT) 
uO 

<~P ( a i - z i ) > p T  
i 1 

~< e ~pr~, p (v r  = n)U2 (sup Euo e2~(~ (B.4) 
n u0 

for any f l>0 .  In the derivation of (B.4) we used the strong Markov 
property together with the exponential Chebyshev inequality. As far as 
the random variables v, and ( a l - Z l )  are concerned, we can prove the 
following result. 

L e m m a  1. There exists f l0>0  such that for any a > 0  if 
fl < flo e x p ( -  a/e2), then 

sup E~,o e2~(~1 Zl) ~< 2 
u0  

for any e small enough. 

l_emma 2. For any a > 0 any n > [ e x p ( - a / e 2 ) ]  T and e sufficiently 
small 

sup Puo(V~ = n) <~ e x,,/d 
uo 

for some K >  0. 

The two lemmas together with (B.4) show that for any fl as in 
Lemma 1 

sup P(z(Uo, O, T) > pT) <~ exp ( - f l pT /2 )  
uo 

if e is small enough. This conclude the proof of the lemma. 
The proofs of Lemma 1 and Lemma 2 are identical to those of the 

finite-dimensional case [see (B.32) and (B.26) of ref. 7] and are omitted. 
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